
Digital Twin Applied To Software
Digital-TwinS

Aik-Siong Koh

2023-06-20 Tue

askoh.com

Motivations

▪ How to understand complex software
better?

▪ Combine best of static and dynamic languages
▪ C++, Rust for speed;
▪ Smalltalk, Python for flexibility

▪ Use redundancy to reduce bugs by orders of
magnitude

askoh.com

Digital Twin Concept (2002)

Physical Digital
askoh.com

Digital Twin Concept

Rigid Flexible
askoh.com

Digital Twin Concept

Digital

Twin

Modeling

Simulation

Animation

askoh.com

Digital-TwinS: Digital Twin applied to Software

▪ Combine best of static and dynamic languages

▪ TIOBE Index (Dec 2022) popularity ranking

1. Python (dynamic)

2. C (static)

3. C++ (static)

askoh.com

Why Digital-TwinS

Input C++ is FAST, complex Output

Input St is FLEXIBLE, simple Output

C++ is best of FAST

Smalltalk is best of FLEXIBLE but not popular

askoh.com

Digital-TwinS: C++ and Smalltalk

Input C++ Production Program Output

Input Smalltalk Twin Program Output

Same Input Same Output (SISO)

Fidelity improves by increasing SISO

Internals can be independent
askoh.com

Same Input Same Output (SISO)

Input C++ Output

Input St Output

Twins can be any size or any component

Internals can be partially dependent

askoh.com

Twins Twins Twins

C++ is FAST at all cost Smalltalk is NIMBLE and rugged
 Low cost

A hybrid vehicle would have compromised capabilities

Java, C#, Obj C

askoh.com

C++ Heavy Infrastructure Smalltalk Light Infrastructure
 Small area Large area

Execution Exploration

askoh.com

We want to win in both settings

Why Digital-TwinS cont.

Input C++ is Machine centric Output

Input St is Programmer centric Output

Humans think Objects

“Development at the speed of thought”

askoh.com

Why Digital-TwinS cont. 1

Input C++ for Computer Experts Output

Input St for Domain Experts Output

Synergy and feedback between experts

askoh.com

Why Digital-TwinS cont. 2

• Assume developing a brand-new feature.

• Smalltalk alone can do it in T days. But the feature is slow.

• C++ alone can do it in 5T days. But the feature is fast.

• Twins can do it in 3T days. Smalltalk development T days.
Guided port to C++ is 2T days. Feature is fast and
development is shorter.

• Twins cross-checking each other will reduce bugs in both
greatly. This is a bonus.

askoh.com

Why Digital-TwinS cont. 3

•Twin can help documentation

•Twin could be substitute for documentation
• Smalltalk is readable and less verbose than English

•Twins reduce bugs by checking each other
• Probability of both making the same bug is product of Probabilities of each

askoh.com

Strategy for Digital-TwinS

• Capture C++ algorithms in Smalltalk twin
• Executable documentation

• Experiment in Smalltalk twin (superset program)
• Fearless programming

• Transfer discoveries to C++ twin
• Manually, automated or both
• Strict testing
• Iterate with twin

• Debug in Smalltalk twin
• Transfer fixes to C++ twin

askoh.com

Strategy for Digital-TwinS cont.

•Smalltalk explores, discovers, innovates

•Good discoveries are transferred to C++ twin

•C++ type checks, runs tests, runs fast

•Feedback and iterate

•Division of labor

•Twins cover each other completely

askoh.com

Prototype vs Digital-TwinS vs Production

Time

Prototype Dev is Nimble and Simple in St

Production Dev is Difficult in C++. Runs FAST

Prototype in St Digital-TwinS in St advanced features

Production in C++ stable features

Production in C++ Slow progress Faster progress stable features

Digital-TwinS in St advanced features

askoh.com

Why Smalltalk

•Everything is an object all the time
• Including IDE, Compiler, Debugger, Scheduler

• Even when saved to disk on exit

•All operations are through message passing
• Everything in Smalltalk is written in Smalltalk

• Including Virtual Machine

• Critical Smalltalk code are translated to C to be called
• VM code is translated to C and compiled to executable

askoh.com

Why Smalltalk

•Everything is an object all the time
• Pure OOP
• 1, 1.0e2, $a, #b, ‘Hello’
• true, false, nil, self, super, thisContext
• Class, Block (lambda), Compiler, Debugger, etc
• On exit, all objects are saved to disk
• On startup, IDE returns to exact state before exit
• Automatic garbage collection

askoh.com

Why Smalltalk

•All operations are through message passing
• Object message (like Subject predicate)
• array isEmpty.
• 4 + 3.
• Transcript show: ‘Hello World’.
• array do: [:each | each initialize. each run].

askoh.com

Why Smalltalk

• Smalltalk pioneered Pure OOP

• Influenced Objective-C, Java, Python, Ruby

• Pioneered MVC, GUI

• Xerox invented it for DARPA

• Xerox killed it
• They wanted to sell printers and copiers

• It is free to be owned

askoh.com

Entire Syntax fits on a postcard

askoh.com

Smalltalk is Best of Flexible

•Edit and run anywhere
• Zero build time

•Edit and continue in Debugger

• Inspect any object anytime

•Arbitrary levels of inspecting and debugging

•Save all objects and restart where you left off

askoh.com

Digital-TwinS: C++ and Smalltalk

Input C++ Production Program Output

Input Smalltalk Twin Program Output

Great Complement

Checks and Balances

Hybrid program would be a mediocre compromise

askoh.com

Digital-TwinS:
OpenSmalltalk-VM and Production-VM

• OpenSmalltalk-VM is written in Smalltalk

• Production-VM is written in C

• Both VMs read the Smalltalk image file and run the Smalltalk
IDE in which more Smalltalk programming is done

• Same Input Same Output

• OpenSmalltalk-VM has all the flexibility of Smalltalk

• Production-VM has all the speed of C

askoh.com

Smalltalk VM is written in Smalltalk
and Translated to C

• Slang is subset of Smalltalk

• Slang mimics C

• VM is written in Slang in Smalltalk IDE

• VM is simulated in Smalltalk IDE to run another Smalltalk image

• Full debugging power of Smalltalk used on VM code

• VM Slang code is then translated to C code

• VM C code is compiled to make runtime executable VM

askoh.com

Slang to C translation
Slang (subset of Smalltalk) C

instanceVariableNames: 'foregroundColor
backgroundColor'

sqInt foregroundColor, backgroundColor;

classVariableNames: 'MemorySize' #define MemorySize 10

^a+b return (a+b);

a bitShift: 4 a >> 4;

now := FooBar foo: x bar: y now = foobar(x,y);

^self bigEndian ifTrue: [16r6502] ifFalse: [16r0265] return bigEndian() ? 0x6502 : 0x0265;

1 to: 10 by: 2 do: [:i | a at: 1 put: (i*2)] for(i=1; i = 10; i += 2) { a[i] := (i*2); }

flag whileTrue: [self check] while (flag) { check(); }

getName
 <returnTypeC: 'char *’>
 | newStr |
 <var: #newStr type: 'char*’>
 newStr := ‘hello’
 ^newStr

char *getName(void)
{
 char*newStr = "hello";
 return newStr;
}askoh.com

Slang to C translation
Slang C

defaultWidth
 <inline: true>
 ^10

width
 <inline: false>
 ^width ifNil: [width := defaultWidth].

static sqInt width(void)
{
 return width == nilObj ? (width = 10) : width;
}

https://wiki.squeak.org/squeak/2267

askoh.com

Smalltalk VM written in JavaScript

• https://caffeine.js.org/beatshifting/

• https://pharojs.org/demo.html

askoh.com

https://caffeine.js.org/beatshifting/
https://pharojs.org/demo.html

Digital-TwinS Conclusion

• C++ for speed, strict safety
• Industry is good at it

• Smalltalk for flexibility, experimentation, fun
• “Development at the speed of thought”

• Twins reduce bugs by checking each other

• Smalltalk was invented right

• Anyone can “own” Smalltalk for free

askoh.com

	Slide 1: Digital Twin Applied To Software Digital-TwinS
	Slide 2: Motivations
	Slide 3: Digital Twin Concept (2002)
	Slide 4: Digital Twin Concept
	Slide 5: Digital Twin Concept
	Slide 6: Digital-TwinS: Digital Twin applied to Software
	Slide 7: Why Digital-TwinS
	Slide 8: Digital-TwinS: C++ and Smalltalk
	Slide 9: Same Input Same Output (SISO)
	Slide 10: C++ is FAST at all cost Smalltalk is NIMBLE and rugged Low cost
	Slide 11: C++ Heavy Infrastructure Smalltalk Light Infrastructure Small area Large area
	Slide 12: Why Digital-TwinS cont.
	Slide 13: Why Digital-TwinS cont. 1
	Slide 14: Why Digital-TwinS cont. 2
	Slide 15: Why Digital-TwinS cont. 3
	Slide 16: Strategy for Digital-TwinS
	Slide 17: Strategy for Digital-TwinS cont.
	Slide 18: Prototype vs Digital-TwinS vs Production
	Slide 19: Why Smalltalk
	Slide 20: Why Smalltalk
	Slide 21: Why Smalltalk
	Slide 22: Why Smalltalk
	Slide 23: Entire Syntax fits on a postcard
	Slide 24: Smalltalk is Best of Flexible
	Slide 25: Digital-TwinS: C++ and Smalltalk
	Slide 26: Digital-TwinS: OpenSmalltalk-VM and Production-VM
	Slide 27: Smalltalk VM is written in Smalltalk and Translated to C
	Slide 28: Slang to C translation
	Slide 29: Slang to C translation
	Slide 30: Smalltalk VM written in JavaScript
	Slide 31: Digital-TwinS Conclusion

