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Motivations

▪ How to understand complex software 
better?

▪ Combine best of static and dynamic languages
▪ C++, Rust for speed; 
▪ Smalltalk, Python for flexibility

▪ Use redundancy to reduce bugs by orders of 
magnitude
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Digital Twin Concept (2002)

Physical Digital
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Digital Twin Concept

Rigid Flexible
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Digital Twin Concept
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Digital-TwinS: Digital Twin applied to Software

▪ Combine best of static and dynamic languages

▪ TIOBE Index (Dec 2022) popularity ranking

1. Python (dynamic)

2. C (static)

3. C++ (static)
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Why Digital-TwinS

Input C++ is FAST, complex Output

Input St is FLEXIBLE, simple Output

C++ is best of FAST

Smalltalk is best of FLEXIBLE but not popular
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Digital-TwinS: C++ and Smalltalk

Input C++ Production Program Output

Input Smalltalk Twin Program Output

Same Input Same Output (SISO)

Fidelity improves by increasing SISO

Internals can be independent
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Same Input Same Output (SISO)

Input C++ Output

Input St Output

Twins can be any size or any component

Internals can be partially dependent
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Twins Twins Twins



C++ is FAST at all cost                Smalltalk is NIMBLE and rugged
                                                            Low cost

A hybrid vehicle would have compromised capabilities

Java, C#, Obj C
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C++ Heavy Infrastructure            Smalltalk Light Infrastructure
        Small area                                      Large area

Execution Exploration
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We want to win in both settings



Why Digital-TwinS cont.

Input C++ is Machine centric Output

Input St is Programmer centric Output

Humans think Objects

“Development at the speed of thought”
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Why Digital-TwinS cont. 1

Input C++ for Computer Experts Output

Input St for Domain Experts Output

Synergy and feedback between experts
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Why Digital-TwinS cont. 2

• Assume developing a brand-new feature.

• Smalltalk alone can do it in T days. But the feature is slow.

• C++ alone can do it in 5T days. But the feature is fast.

• Twins can do it in 3T days. Smalltalk development T days. 
Guided port to C++ is 2T days. Feature is fast and 
development is shorter.

• Twins cross-checking each other will reduce bugs in both 
greatly. This is a bonus.
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Why Digital-TwinS cont. 3

•Twin can help documentation

•Twin could be substitute for documentation
• Smalltalk is readable and less verbose than English

•Twins reduce bugs by checking each other
• Probability of both making the same bug is product of Probabilities of each
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Strategy for Digital-TwinS

• Capture C++ algorithms in Smalltalk twin
• Executable documentation

• Experiment in Smalltalk twin (superset program)
• Fearless programming

• Transfer discoveries to C++ twin
• Manually, automated or both
• Strict testing
• Iterate with twin

• Debug in Smalltalk twin
• Transfer fixes to C++ twin
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Strategy for Digital-TwinS cont.

•Smalltalk explores, discovers, innovates

•Good discoveries are transferred to C++ twin

•C++ type checks, runs tests, runs fast

•Feedback and iterate

•Division of labor

•Twins cover each other completely
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Prototype vs Digital-TwinS vs Production

Time

Prototype Dev is Nimble and Simple in St

Production Dev is Difficult in C++.   Runs FAST

Prototype in St                     Digital-TwinS in St                     advanced features

Production in C++                           stable features

Production in C++     Slow progress              Faster progress    stable features

Digital-TwinS in St              advanced features
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Why Smalltalk

•Everything is an object all the time
• Including IDE, Compiler, Debugger, Scheduler

• Even when saved to disk on exit

•All operations are through message passing
• Everything in Smalltalk is written in Smalltalk

• Including Virtual Machine

• Critical Smalltalk code are translated to C to be called
• VM code is translated to C and compiled to executable
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Why Smalltalk

•Everything is an object all the time
• Pure OOP
• 1, 1.0e2, $a, #b, ‘Hello’
• true, false, nil, self, super, thisContext
• Class, Block (lambda), Compiler, Debugger, etc
• On exit, all objects are saved to disk
• On startup, IDE returns to exact state before exit
• Automatic garbage collection
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Why Smalltalk

•All operations are through message passing
• Object message (like Subject predicate)
• array isEmpty.
• 4 + 3.
• Transcript show: ‘Hello World’.
• array do: [:each | each initialize. each run].
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Why Smalltalk

• Smalltalk pioneered Pure OOP

• Influenced Objective-C, Java, Python, Ruby

• Pioneered MVC, GUI

• Xerox invented it for DARPA

• Xerox killed it
• They wanted to sell printers and copiers

• It is free to be owned
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Entire Syntax fits on a postcard
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Smalltalk is Best of Flexible

•Edit and run anywhere
• Zero build time

•Edit and continue in Debugger

• Inspect any object anytime

•Arbitrary levels of inspecting and debugging

•Save all objects and restart where you left off
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Digital-TwinS: C++ and Smalltalk

Input C++ Production Program Output

Input Smalltalk Twin Program Output

Great Complement

Checks and Balances

Hybrid program would be a mediocre compromise
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Digital-TwinS: 
OpenSmalltalk-VM and Production-VM

• OpenSmalltalk-VM is written in Smalltalk

• Production-VM is written in C

• Both VMs read the Smalltalk image file and run the Smalltalk 
IDE in which more Smalltalk programming is done

• Same Input Same Output

• OpenSmalltalk-VM has all the flexibility of Smalltalk

• Production-VM has all the speed of C
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Smalltalk VM is written in Smalltalk
and Translated to C

• Slang is subset of Smalltalk

• Slang mimics C

• VM is written in Slang in Smalltalk IDE

• VM is simulated in Smalltalk IDE to run another Smalltalk image

• Full debugging power of Smalltalk used on VM code

• VM Slang code is then translated to C code

• VM C code is compiled to make runtime executable VM
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Slang to C translation
Slang (subset of Smalltalk) C

instanceVariableNames: 'foregroundColor 
backgroundColor'

sqInt foregroundColor, backgroundColor;

classVariableNames: 'MemorySize' #define MemorySize 10

^a+b return (a+b);

a bitShift: 4 a >> 4;

now := FooBar foo: x bar: y now = foobar(x,y);

^self bigEndian ifTrue: [16r6502] ifFalse: [16r0265] return bigEndian() ? 0x6502 : 0x0265;

1 to: 10 by: 2 do: [:i | a at: 1 put: (i*2)] for(i=1; i = 10; i += 2) { a[i] := (i*2); }

flag whileTrue: [ self check ] while (flag) { check(); }

getName 
    <returnTypeC: 'char *’> 
    | newStr | 
    <var: #newStr type: 'char*’> 
    newStr := ‘hello’ 
    ^newStr

char *getName(void) 
{ 
    char*newStr = "hello"; 
    return newStr; 
}askoh.com



Slang to C translation
Slang C

defaultWidth 
    <inline: true> 
    ^10 

width 
    <inline: false> 
    ^width ifNil: [ width := defaultWidth ].

static sqInt width(void) 
{ 
    return width == nilObj ? (width = 10) : width; 
}

https://wiki.squeak.org/squeak/2267
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Smalltalk VM written in JavaScript

• https://caffeine.js.org/beatshifting/

• https://pharojs.org/demo.html
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Digital-TwinS Conclusion

• C++ for speed, strict safety
• Industry is good at it

• Smalltalk for flexibility, experimentation, fun
• “Development at the speed of thought”

• Twins reduce bugs by checking each other

• Smalltalk was invented right

• Anyone can “own” Smalltalk for free
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